Jianhao Zeng

jh_zeng@tju.edu.cn | zengjianhao.github.io | Google Scholar

Education

Tianjin University M.S. in Electronic and Information Engineering Advisor: Prof. Dan Song	Tianjin, China 2021/09 – 2024/06
Tianjin University	Tianjin, China
B.Eng. in Mechanical Design & Manufacturing and Their Automation	2017/09 – 2021/06

Research Interests

I am broadly interested in computer vision and multi-modal learning, especially generative models and their application, including video generation, image generation and 3D content generation. I have extensively explored 2D virtual try-on and text-to-video generation. Additionally, automatic 3D content generation is crucial for building virtual worlds, so I am also interested in high-quality 3D content generation.

Publications and Manuscripts

[P.1]	Fashion Customization: Image Generation Based on Editing Clue	
	Dan Song, Jianhao Zeng , Min Liu, Xuanya Li, Anan Liu [#]	
	IEEE Transactions on Circuits and Systems for Video Technology (TCSVT)	

- [P.2] CAT-DM: Controllable Accelerated Virtual Try-on with Diffusion Model Jianhao Zeng, Dan Song[#], Weizhi Nie, Hongshuo Tian, Tongtong Wang, Anan Liu[#] IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2024)
- [M.1] Better Fit: Accommodate Variations in Clothing Types for Virtual Try-on Dan Song, Xuanpu Zhang, Jianhao Zeng, Pengxin Zhan, Qingguo Chen, Weihua Luo, Anan Liu[#] IEEE Transactions on Circuits and Systems for Video Technology (TCSVT) Major reversion
- [M.2] BooW-VTON: Boosting In-the-Wild Virtual Try-On via Mask-Free Pseudo Data Training Xuanpu Zhang, Dan Song, Pengxin Zhan, Tianyu Chang, Jianhao Zeng, Qingguo Chen, Weihua Luo, Anan Liu* IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2025) In submission
- [M.3] Robust-MVTON: Learning Cross-Pose Feature Alignment and Fusion for Robust Multi-View Virtual Try-On Nannan Zhang, Yijiang Li, Dong Du, Zheng Chong, Zhengwentai Sun, Jianhao Zeng, Yusheng Dai, Zhenyu Xie, Hairui Zhu, Xiaoguang Han^{*}

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2025) In submission

[M.4] FocusDiT: Masking Queries in Diffusion Transformers for Fine-grained Image Generation Xueji Fang, Jianhao Zeng, Zeyu Wu, Mingyuan Zhou, Liyuan Ma, Guojun Qi[#] IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2025) In submission

Research Experiences

Research Assistant

Laboratory for MAchine Perception and LEarning (MAPLE), Westlake University

Hangzhou, China 2024/06 – Current

Advisor: Dr. Liyuan Ma, Dr. Zhiyang Chen and Prof. Guojun Qi (Fellow of IEEE, IAPR and AAIA)

- A text-to-image generation model called FocusDiT. It applies a Masking scheme to focus on critical query tokens that are exclusively fed into FFN, which were submitted to CVPR 2025. [M.4]
- The video generation model SnapVideo has been successfully replicated.

Institute of Television and Image Information, Tianjin University

Advisor: Prof. Dan Song and Prof. Anan Liu

- A novel framework for generating customized fashion images. This framework enables users to create tailored fashion visuals by providing multi-modal editing clues, which were accepted to TCSVT. [P.1]
- A model called CAT-DM based on ControNet and PBE for virtual try-on. This model utilizes the implicit distribution generated by a pre-trained GAN-based model to initiate the reverse denoising process. CAT-DM not only retains the pattern and texture details of the in-shop garment but also reduces the sampling steps without compromising generation quality, which were accepted to CVPR 2024. [P.2]
- An adaptive mask training paradigm that dynamically adjusts training masks for virtual try-on. It not only improves the alignment and fit of clothing but also significantly enhances the fidelity of virtual try on experience, which were submitted to TCSVT. [M.1]
- A mask-free virtual try-on diffusion model called BooW-VTON. It generates realistic try-on results without requiring any additional parser, which were submitted to CVPR 2025. [M.2]
- A Multi-View Try-On method called Robust-MVTON. It generates robust and high-quality multi-view ry-on results using front- and back-view clothing inputs, which were submitted to CVPR 2025. [M.3]

Competitions

Graduate Student

Top 6.9% in Jiangsu Meteorological AI Algorithm Challenge	2022/06
• First Prize in Tianjin University Undergraduate Physicists Tournament (TJUPT)	2019/08
Second Prize in National College Students Mathematical Competition	2018/10
Third Prize in Tianjin College Student Mathematics Competition	2018/05
Awards	
CVPR Registration and Travel Support	2024
Excellent Master's Degree Thesis of Tianjin University (Top 5%)	2024
Tianjin University Academic Scholarship	2021, 2022, 2023

Others

- Reviewer: ACM MM (2024), ICLR (2025), CVPR (2025)
- Teaching Assistant: Digital Logic Circuit, Tianjin University
- Translation: Physically Based Rendering: From Theory To Implementation, fourth edition
- Patent: A Fashion Image Editing Method and Device Based on Self-Attention Mechanism (CN115082295B)

Skills

- Programming Languages
- Frameworks
- Tools
- Human Languages

C, C++, Python, HTML, CSS, JavaScript PyTorch, PyTorch Lightning, Accelerate Linux, Git, LaTeX, Typst Mandarin, English (TOEFL iBT: 94)